National Girls Collaborative Project

The National Girls Collaborative Project (NGCP) brings together organizations that are committed to informing and encouraging girls to pursue careers in science, technology, engineering, and mathematics (STEM).

www.ngcproject.org
Current Collaborative Sites

Regional Collaboratives

California:
www.ngcproject.org/california

Florida:
www.ngcproject.org/Florida

North Carolina:
www.ngcproject.org/northcarolina

Northwest:
www.ngcproject.org/northwest

Texas
www.ngcproject.org/texas

Connecticut:
www.ngcproject.org/connecticut

Kentucky:
www.ngcproject.org/kentucky

Maine:
www.ngcproject.org/maine

Tennessee:
www.ngcproject.org/Tennessee

Great Lakes (IL, IN, MI, OH, WI)
Project Goals

1. Maximize access to shared resources within projects and with public and private sector organizations and institutions interested in expanding girls’ participation in STEM.

2. Strengthen capacity of existing and evolving projects by sharing promising practice research and program models, outcomes and products.

3. Use the leverage of a network or collaboration of individual girl-serving STEM programs to create the tipping point for gender equity in STEM.
Strengthening Capacity

The NGCP will disseminate Research Based Strategies to strengthen the capacity of girl-serving organizations to provide high-quality informal learning environments for girls in STEM and to effectively evaluate and assess their efforts.

Our partners
- Education Development Center (EDC)
- Assessing Women and Men in Engineering (AWE)

Our methods
- Webcasts
- Collaborative events
- Resource collection on NGCP website
Today’s Agenda

• Learn how you can use evaluation to improve your program
• Learn about easy-to-use evaluation tools and processes and how they might serve your program
• Hear about specific strategies one program uses when using evaluation data to improve their program
Using the Data: How to Plan, Develop, and Use Program Evaluation to Build a Better Program

Vicky Ragan
Evaluation & Research Associates
NGCP Evaluator
vragan@psctlt.org
Your Evaluation Knowledge
Program evaluation is about carefully collecting information about a program or some aspect of a program in order to make necessary decisions about the program.

Carter McNamara, Authenticity Consulting, LLC
Evaluation is a field in which information is gathered for a purpose, that purpose being decision-making and action on the part of stakeholders, toward improvement of social and educational programs and social conditions more broadly.

Alkin et al., 1979; Weiss, 1998
Reasons for Evaluation

• Program improvement
• Measure outcomes
• Program justification
• Accountability
• Program clarification
• Cost-effectiveness
Types of Evaluation

• **Formative** – conducted during development and implementation.

• **Summative** – conducted at the end of the program to judge worth.

When the cook tastes the soup, that’s formative; when the guests taste the soup, that’s summative.

Robert Stakes
Evaluation Planning

• Purpose
• Audience
• Measurable indicators or outcomes
• Information needed
• Sources of information
• Resources available to collect information
• Limitations—funding, time, access to data, expertise, etc.
Planning an Evaluation

Phase one
- Preplanning and background information

Phase two
- Evaluation design and framework

Phase three
- Conduct the evaluation
Program Objectives

SMART Objectives

- **Specific** – Objectives should specify what they want to achieve
- **Measurable** – You should be able to measure whether you are meeting the objectives or not
- **Achievable** – Are the objectives you set achievable and attainable?
- **Realistic** – Can you realistically achieve the objectives with the resources you have?
- **Time** – When do you want to achieve the set objectives?
By June 29, 2009 (timely), NGCP Program evaluators will increase the number of training sessions given for STEM program partners on “Implementing Evaluation for Program Decision-making” (specific & relevant) from 10 to 14 (measurable & achievable) by attending and presenting at partner regional conferences.
Logic Model

- Resources (Inputs)
- Activities (Interventions)
- Outcomes (Short and Long term)
- Impact
Logic Model Sample

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Activities</th>
<th>Outputs</th>
<th>Outcomes</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle School Girls Computers</td>
<td>Game programming sessions</td>
<td>Web site with girl-created computer games</td>
<td>Participants’ increased confidence in technology</td>
<td>Gender equity in IT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Participants skilled in programming language</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation Methods

Quantitative
- Surveys/Questionnaires
- Document Review

Qualitative
- Interviews
- Focus Groups
- Observations

Mixed Methods

Benefits
- Depth and breadth
- Triangulate results
- Clarify findings

Drawbacks
- Cost
- Effort
- Expertise
Tips for Writing Surveys

- General guidelines
- Before deploying the survey
- Survey introduction
- Survey questions
- Scale questions
- Submitting surveys
A Quick Note about Online Surveys

Online surveys

• Access to computers/Internet
• Technical skills
• Confidential/Secure
• Data entry is automatic
Reporting Considerations

Audience
• Funders
• Program staff
• Program participants
• Community members
• Partners

Purpose
• Accountability
• Solicit funding
• Make program decisions
• Show progress
• Celebrate
Successful Evaluation

- Systematic process
- Produces valid results
- Requires careful planning and follow-through
- Looks at what DOES happen in the real world
Evaluation Resources

- Online Evaluation Resource Library
- Out of School Time Program Evaluation Database at Harvard Family Research Project
- Toolfind: Youth Outcomes Tools Directory
- Assessing Women and Men in Engineering
Assessment and the Use of Data for a Pre-college Engineering Camp

Tricia Berry
Director, Women in Engineering Program
Director, Texas Girls Collaborative Project

The University of Texas at Austin

April 9, 2008

NGCP Webcast: Using the Data: How to Plan, Develop and Use Program Evaluation to Build a Better Program
Overview

• Pre-college Engineering Camp Background
• Justification for Assessment
• Steps to Assess and Evaluate
• Words of Wisdom

WE@UT
Women Engineers at UT Austin
Pre-college Engineering Camp Background

• Established in 2001
• Targets “High Potential” High School Senior Women
• Has become a model for other UT camps
• Includes faculty presentations, hands-on design projects, team activities
Justification for Assessment

We use WE@UT assessments and evaluations to...

• determine if we actually accomplish anything.
• report to funders; secure funding.
• justify existence to school administrators.
• improve program content and/or delivery.
Justification for Assessment
Steps to Assess and Evaluate

1. Determine fit with mission.
2. Set goals.
3. Define measurable objectives.
4. Develop/modify/implement assessments.
5. Analyze and evaluate the data.
6. Do something with the results.
Steps to Assess and Evaluate

Determine Fit with Mission

WE@UT Fit with Mission

- **Educate** girls and women about engineering
- **Inspire** women to pursue the unlimited opportunities within the world of engineering
- **Empower** women engineers to benefit society

The mission of the Women in Engineering Program is to increase the overall percentage of women in the Cockrell School of Engineering at The University of Texas at Austin. WEP strives to:

- **educate** girls and women about engineering
- **inspire** women to pursue the unlimited opportunities within the world of engineering
- and **empower** women engineers to benefit society
Steps to Assess and Evaluate

Set Goals

- Contribute to the overall goal of WEP to recruit, retain and graduate women in the Cockrell School of Engineering at UT Austin
- Improve participants’ perception of engineering
- Increase participants’ percent chance she will apply to UT engineering
- Establish a line of communication with pre-college participants
- Positively affect the graduation rates of participants who enroll in engineering at UT Austin
- Help current students feel more a part of engineering community
- Provide leadership opportunities for current student volunteers
Steps to Assess and Evaluate

Define Measurable Objectives

- 80 female high school senior participants
 - 80% of participants apply to Engineering at UT
 - 40% of participants enroll in Engineering at UT
 - 100% of those enrolled are retained through 1st year
 - 75% of those enrolled graduate with an engineering degree after 6 years
- Participants show, on average, an increase in the percent chance of applying to UT and majoring in engineering as indicated on immediate post surveys compared to pre-surveys (excluding those at 100% chance already)
- 75% of student volunteers show a greater sense of feeling a part of engineering community as indicated on immediate post surveys
- 75% of student volunteers show a gain in communication skills
Steps to Assess and Evaluate

Develop/Modify/Implement Assessments

- Participant Registration and Event Check-in Data
- Participant Pre and Immediate Post Surveys
- Volunteer Registration and Event Check-in Data
- Volunteer Immediate Post Surveys
- Application and Enrollment Data
- Retention and Graduation Data
Steps to Assess and Evaluate

Develop/Modify/Implement Assessments

I have a good understanding of engineering:
Please make your selection.

I have a good understanding of what it takes to apply to engineering at The University of Texas at Austin:
Please make your selection.

What is the chance that you will apply to The University of Texas at Austin?
Please answer with a percentage between 0% and 100%.

What is the chance that you will choose engineering as a major in college?
Please answer with a percentage between 0% and 100%.

What is the chance that you will choose engineering as a major at The University of Texas at Austin?
Please answer with a percentage between 0% and 100%.

Online Registration (Pre-survey)
Steps to Assess and Evaluate

Develop/Modify/Implement Assessments

2. What engineering major(s) are you most interested in?

- [] Aerospace Engineering
- [] Chemical Engineering
- [] Electrical and Computer Engineering
- [] Petroleum Engineering
- [] Biomedical Engineering
- [] Civil, Architectural & Environmental Engineering
- [] Mechanical Engineering
- [] No preference

3. I feel that I have a good understanding of what it takes to apply to engineering at UT-Austin.

- [] Strongly Disagree
- [] Disagree
- [] Neutral
- [] Agree
- [] Strongly Agree

4. What other interests do you have outside of engineering?

5. What is the chance that you will apply to UT-Austin? Please indicate by marking an “x” on the line below:

- [] No Chance
- [] 0%
- [] 25%
- [] 50%
- [] 75%
- [] 100%
- [] Definitely
Steps to Assess and Evaluate

Develop/Modify/Implement Assessments

<table>
<thead>
<tr>
<th>Session</th>
<th>Immediate</th>
<th>Post Survey</th>
</tr>
</thead>
</table>

This session increased my interest in engineering

<table>
<thead>
<tr>
<th>Not a lot</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>A lot</th>
<th>Some</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional comments may be written on back

<table>
<thead>
<tr>
<th>Fun Meter</th>
<th>boring</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>awesome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I thought this presenter/engineer was

<table>
<thead>
<tr>
<th>poor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cockrell School of Engineering

The University of Texas at Austin

Women in Engineering Program
Steps to Assess and Evaluate

Analyze and Evaluate the Data

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Applied to UT</td>
<td>50.56%</td>
<td>81.33%</td>
<td>78.48%</td>
<td>80.33%</td>
<td>60.33%</td>
<td>64.75%</td>
</tr>
<tr>
<td>3</td>
<td>Applied to Engineering</td>
<td>46.19%</td>
<td>52.00%</td>
<td>43.04%</td>
<td>50.82%</td>
<td>54.10%</td>
<td>52.54%</td>
</tr>
<tr>
<td>4</td>
<td>Enrolled in UT of All WE@UT Participants</td>
<td>23.49%</td>
<td>37.33%</td>
<td>26.58%</td>
<td>31.15%</td>
<td>27.87%</td>
<td>45.76%</td>
</tr>
<tr>
<td>5</td>
<td>Enrolled in Engineering of ALL WE@UT Participants</td>
<td>19.31%</td>
<td>21.33%</td>
<td>16.46%</td>
<td>18.03%</td>
<td>18.03%</td>
<td>30.51%</td>
</tr>
<tr>
<td>6</td>
<td>Enrolled in UT of All WE@UT Participants who Applied</td>
<td>5.52%</td>
<td>45.90%</td>
<td>33.87%</td>
<td>39.78%</td>
<td>34.89%</td>
<td>54.00%</td>
</tr>
<tr>
<td>7</td>
<td>Enrolled in Engineering of All WE@UT Participants who Applied</td>
<td>2.47%</td>
<td>41.03%</td>
<td>38.24%</td>
<td>35.49%</td>
<td>33.39%</td>
<td>58.06%</td>
</tr>
<tr>
<td>8</td>
<td>1 Year Retention in UT</td>
<td>8.11%</td>
<td>96.43%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>1 Year Retention in Engineering</td>
<td>18.30%</td>
<td>87.50%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>90.91%</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>2 Year Retention in UT</td>
<td>11.86%</td>
<td>96.43%</td>
<td>100.00%</td>
<td>94.74%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>2 Year Retention in Engineering</td>
<td>22.36%</td>
<td>81.26%</td>
<td>84.62%</td>
<td>81.82%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>3 Year Retention in UT</td>
<td>13.36%</td>
<td>89.29%</td>
<td>95.24%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>3 Year Retention in Engineering</td>
<td>N/A</td>
<td>56.25%</td>
<td>84.62%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>14</td>
<td>Estimated 4 Year Graduation Rate in UT</td>
<td>23.75%</td>
<td>75.00%</td>
<td>61.90%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>15</td>
<td>Estimated 4 Year Graduation Rate in Engineering</td>
<td>N/A</td>
<td>56.25%</td>
<td>53.85%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>16</td>
<td>Total Participants (2001-2005 Combined)</td>
<td>75</td>
<td>79</td>
<td>61</td>
<td>61</td>
<td>55</td>
<td>61</td>
</tr>
</tbody>
</table>

Longitudinal Data

[Source: Cockrell School of Engineering, The University of Texas at Austin, Women in Engineering Program]
Steps to Assess and Evaluate

Analyze and Evaluate the Data

- 80 female high school senior participants (70 attend; 44% minority)
 - 80% of participants apply to Engineering at UT (56/70=80% applied to UT; 41/70=59% applied to UT engineering; 44/70=63% admitted to UT; 28/70=40% admitted to UT engineering) *96% of all admits were top 10% in engineering and 200 fewer admits total to engineering due to admissions cap; invite pool for WE@UT was based on PSAT and other factors and not class rank, thus creating a pool of participants that were not as likely to perhaps get admitted
 - 40% of participants enroll in Engineering at UT
 - 100% of those enrolled are retained through 1st year
 - 75% of those enrolled graduate with an engineering degree after 6 years
- Participants show, on average, an increase in the percent chance of applying to UT and majoring in engineering (yes – 8% increase) as indicated on immediate post surveys compared to pre-surveys (excluding those at 100% chance already)
- 75% of student volunteers show a greater sense of feeling a part of engineering community (92%) as indicated on immediate post surveys
- 75% of student volunteers show a gain in communication skills (85%)
Steps to Assess and Evaluate

Analyze and Evaluate the Data

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Difference between WE@UT Average & College/Univ. Average</td>
<td>50.56%</td>
<td>81.33%</td>
<td>78.48%</td>
<td>80.33%</td>
<td>80.33%</td>
<td>64.75%</td>
</tr>
<tr>
<td>2</td>
<td>Applied to UT</td>
<td>46.19%</td>
<td>52.00%</td>
<td>43.04%</td>
<td>50.82%</td>
<td>54.10%</td>
<td>52.54%</td>
</tr>
<tr>
<td>3</td>
<td>Applied to Engineering</td>
<td>23.48%</td>
<td>37.33%</td>
<td>26.58%</td>
<td>31.15%</td>
<td>27.87%</td>
<td>45.76%</td>
</tr>
<tr>
<td>4</td>
<td>Enrolled in UT of All WE@UT Participants</td>
<td>19.31%</td>
<td>21.33%</td>
<td>16.46%</td>
<td>18.03%</td>
<td>18.03%</td>
<td>30.51%</td>
</tr>
<tr>
<td>5</td>
<td>Enrolled in Engineering of ALL WE@UT Participants</td>
<td>5.52%</td>
<td>45.90%</td>
<td>33.87%</td>
<td>39.78%</td>
<td>34.69%</td>
<td>54.00%</td>
</tr>
<tr>
<td>6</td>
<td>Enrolled in UT of All WE@UT Participants who Applied</td>
<td>2.47%</td>
<td>41.03%</td>
<td>38.24%</td>
<td>35.49%</td>
<td>33.33%</td>
<td>58.06%</td>
</tr>
<tr>
<td>7</td>
<td>1 Year Retention in UT</td>
<td>8.11%</td>
<td>96.43%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>1 Year Retention in Engineering</td>
<td>18.30%</td>
<td>87.50%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>90.91%</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>2 Year Retention in UT</td>
<td>11.86%</td>
<td>96.43%</td>
<td>100.00%</td>
<td>94.74%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>2 Year Retention in Engineering</td>
<td>22.36%</td>
<td>81.25%</td>
<td>84.62%</td>
<td>81.82%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>3 Year Retention in UT</td>
<td>13.36%</td>
<td>89.29%</td>
<td>96.24%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>3 Year Retention in Engineering</td>
<td>N/A</td>
<td>56.25%</td>
<td>84.62%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>Estimated 4 Year Graduation Rate in UT</td>
<td>23.75%</td>
<td>75.00%</td>
<td>61.90%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>14</td>
<td>Estimated 4 Year Graduation Rate in Engineering</td>
<td>N/A</td>
<td>56.25%</td>
<td>53.85%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column</th>
<th>WE@UT 2001</th>
<th>WE@UT 2002</th>
<th>WE@UT 2003</th>
<th>WE@UT 2004</th>
<th>WE@UT 2005</th>
<th>WE@UT 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Participants (2001-2005 Combined)</td>
<td>75</td>
<td>79</td>
<td>61</td>
<td>61</td>
<td>55</td>
<td>61</td>
</tr>
</tbody>
</table>

Longitudinal Data

Cockrell School of Engineering
The University of Texas at Austin
Women in Engineering Program
Steps to Assess and Evaluate

Do Something With the Results

Women in Engineering Program

2006-2007 Annual Report

Presented to XXXX

WEP – XXXX 2006-2007 Partnership Areas

<table>
<thead>
<tr>
<th>Program Area</th>
<th>Program</th>
<th>Impact and Assessment</th>
<th>Funding Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-college Programs</td>
<td>Women in Engineering at UT Austin (WE@UT) – July 25-26, 2007</td>
<td>▪ 63 high school senior women registered to participate (51% ethnic minority)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ 15 current engineering students signed up to volunteer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Your Opportunities are Unlimited at UT Austin (YOU@UT) – October 21, 2006</td>
<td>▪ 74 high school participants (29% ethnic minority)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ 94% of participants indicated the event increased their interest in engineering</td>
<td></td>
</tr>
</tbody>
</table>

How Are You Feeling?
Words of Wisdom

• Start small and focused in your assessment
 – Don’t try to measure everything
 – Think about the use of the results first

• Don’t reinvent the wheel
 – Use the AWE products
 – Use other’s assessments with modifications

• Keep at it...*it will eventually become a part of your program’s culture*
AWE – Assessing Women and Men in Engineering

Assessment Tools for STEM Outreach

• Dana Hosko (dhosko@engr.psu.edu)
• Barbara Bogue (bbogue@psu.edu)
• Rose Marra (rmarra@missouri.edu)
AWE Assessment Tools - Overview

- Pre-College Core Instruments
 - Pre, Immediate Post, 3 to 6 Month Post
- Pre-College Optional Question Modules
- Outreach Activity Observation Form
- Implementation Guide
- Developed for SWE AWE in collaboration with NGCP
AWE Pre-College Surveys-What’s New?

- Discipline specific
 - Engineering, Science, & Computer Versions
 - Designed for adaptation to additional disciplines

- Core Surveys
 - Cover demographics, measure self-efficacy, confidence, career awareness, interest in or attitudes to STEM disciplines/careers, student evaluation of activity (post only)

- Optional Question Modules
 - Add to core surveys to measure sense of community, skills development, recruitment/branding
AWE Pre-College Surveys-What’s New?

• AWE High School LAESE
 • Longitudinal Assessment of Engineering Self-Efficacy instrument
 • Identifies longitudinal changes in the self-efficacy of high school students in engineering
 • Based on AWE’s LAESE and developed and tested by the Female Recruits Explore Engineering Project.
AWE Survey Tools: What’s New?

• K-12 Outreach Activity Observation Form
 • Peer observer tool
 • Provides information to:
 • Effectively deploy volunteers
 • Improve presentations/activities
 • Document participation

• Implementer Guide
 • Provides information on how to:
 • Adapt surveys to your program and objectives
 • Add question modules to address specific objectives
 • Use Observation Form
 • Access other AWE tools
Access and More Information

• Tools available for viewing and download in MS Word format through
 • AWEonline.org
 • Requires free registration

• Online (Survey Monkey) versions available in April
Time for Questions

Please use the Chat section of your screen and type any questions you have for today’s presenters. We will answer as many as time allows.

In case we can’t get to all of your questions, presenter contact information will be available in the archived webcast materials available at:

www.ngcproject.org/events/webcastarchive.cfm
More NGCP Information

Program Directory
www.ngcproject.org/directory

Mini-Grant Application
www.ngcproject.org/mini-grant

Join the NGCP listserv
www.ngcproject.org/resources/newsletter.html

Upcoming Webcast
Wednesday, May 14, 2008, 11:00-12:00 PST
“You Can Make a Difference: Learn How to Plan Role Model Visits and Field Trips to Inspire Girls in Technology, Science, and Engineering”
www.ngcproject.org/events/webcasts.cfm