Girls/young women and boys/young men do not significantly differ in their abilities in mathematics and science, but do differ in their interest, confidence, and sense of belonging in science, technology, engineering, and mathematics (STEM).

For girls/young women of color and girls/young women from lower socioeconomic status, the impacts of the intersectional inequalities of gender, race, ethnicity, and class can hinder identification with and long-term participation in STEM.

K-12 Education

Girls’ and young women’s achievement in mathematics and science is on par with that of boys and young men.

Young Women Participate in High Level Mathematics and Science Courses at Similar Rates as Young Men, Except for Computer Science, Engineering, and Physics.

Higher Education

The rates of science and engineering (S&E) coursetaking for women shift at the undergraduate level and gender disparities begin to emerge.

Women remain underrepresented in the science and engineering workforce, with the greatest disparities occurring in engineering and computer sciences.

STEM Workforce

Women constitute 48% of the total workforce. Women constitute 34% of the STEM workforce.

Women STEM professionals are concentrated in different fields than men, with relatively high shares of women in social sciences and relatively low shares of women in computer and mathematical sciences and engineering.

Latina, Black, and Indigenous women represent less than 10% of the STEM workforce.

Women earn 57% of bachelor’s degrees in all fields. Women earn 50% of bachelor’s degrees in S&E.

Women earn a majority of bachelor’s degrees in psychology, biological sciences, and social sciences, but they earn only 22% in engineering, 20% in computer science, and 21% in physics.

Women of color continue to be underrepresented in STEM, but are gradually increasing their share of STEM degrees.

Women of color make up 20% of the total U.S. population, earn 14% of bachelor’s degrees in STEM fields, and represent less than 10% of the STEM workforce.
References


